4.6 Article

Transmission-based noise spectroscopy for quadratic qubit-resonator interactions

Journal

PHYSICAL REVIEW A
Volume 107, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.107.052603

Keywords

-

Ask authors/readers for more resources

We develop a theory to describe the transient transmission through noisy qubit-resonator systems, where quadratic interactions are present in superconducting and nanomechanical resonators coupled to solid-state qubits. By generalizing the quantum Langevin equations, we find that only linear and quadratic couplings allow for an analytical treatment using standard input-output theory. Focusing on quadratic couplings and arbitrary initial qubit coherences, we demonstrate that noise characteristics can be extracted from input-output measurements by analyzing the averaged fluctuations in transmission probability and phase. Our results extend the field of transmission-based noise spectroscopy and have immediate practical applications.
We develop a theory describing the transient transmission through noisy qubit-resonator systems with quadratic interactions as are found in superconducting and nanomechanical resonators coupled to solid-state qubits. After generalizing the quantum Langevin equations to arbitrary qubit-resonator couplings, we show that only the cases of linear and quadratic couplings allow for an analytical treatment within standard input-output theory. Focussing on quadratic couplings and allowing for arbitrary initial qubit coherences, it is shown that noise characteristics can be extracted from input-output measurements by recording both the averaged fluctuations in the transmission probability and the averaged phase. Our results represent an extension to the field of transmission-based noise spectroscopy with immediate practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available