4.6 Article

The role of preconditioning for extreme storm surges in the western Baltic Sea

Journal

NATURAL HAZARDS AND EARTH SYSTEM SCIENCES
Volume 23, Issue 5, Pages 1817-1834

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/nhess-23-1817-2023

Keywords

-

Ask authors/readers for more resources

When natural hazards interact in compound events, they may reinforce each other. This is a concern today and in light of climate change. We explore how various prior conditions could have influenced peak water levels for the devastating coastal flooding event in the western Baltic Sea in 1872. Our research indicates that a more hybrid approach to analysing compound events and readjusting our present warning system to a more contextualised framework may provide a firmer foundation for climate adaptation and disaster risk management.
When natural hazards interact in compound events, they may reinforce each other. This is a concern today and in light of climate change. In the case of coastal flooding, sea-level variability due to tides, seasonal to inter-annual salinity and temperature variations, or larger-scale wind conditions modify the development and ramifications of extreme sea levels. Here, we explore how various prior conditions could have influenced peak water levels for the devastating coastal flooding event in the western Baltic Sea in 1872. We design numerical experiments by imposing a range of precondition circumstances as boundary conditions to numerical ocean model simulations. This allows us to quantify the changes in peak water levels that arise due to alternative preconditioning of the sea level before the storm surge. Our results show that certain preconditioning could have generated even more catastrophic impacts. As an example, a simulated increase in the water level of 36 cm compared to the 1872 event occurred in Koge just south of Copenhagen (Denmark) and surrounding areas - a region that was already severely impacted. The increased water levels caused by the alternative sea-level patterns propagate as long waves until encountering shallow and narrow straits, and after that, the effect vastly decreases. Adding artificial increases in wind speeds to each study point location reveals a near-linear relationship with peak water levels for all western Baltic locations, highlighting the need for good assessments of future wind extremes. Our research indicates that a more hybrid approach to analysing compound events and readjusting our present warning system to a more contextualised framework might provide a firmer foundation for climate adaptation and disaster risk management. In particular, accentuating the importance of compound preconditioning effects on the outcome of natural hazards may avoid under- or overestimation of the associated risks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available