4.7 Article

Bimodular continuous attractor neural networks with static and moving stimuli

Journal

PHYSICAL REVIEW E
Volume 107, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.107.064302

Keywords

-

Ask authors/readers for more resources

We studied the behavior of bimodular continuous attractor neural networks that process sensory inputs and interact with each other. We observed that the position of bumps in each module shifts towards or away from the other module depending on the type of intermodular coupling. We also found that excitatory and inhibitory couplings encode attractive and repulsive priors, respectively, in multisensory integration.
We investigated the dynamical behaviors of bimodular continuous attractor neural networks, each processing a modality of sensory input and interacting with each other. We found that when bumps coexist in both modules, the position of each bump is shifted towards the other input when the intermodular couplings are excitatory and is shifted away when inhibitory. When one intermodular coupling is excitatory while another is moderately inhibitory, temporally modulated population spikes can be generated. On further increase of the inhibitory coupling, momentary spikes will emerge. In the regime of bump coexistence, bump heights are primarily strengthened by excitatory intermodular couplings, but there is a lesser weakening effect due to a bump being displaced from the direct input. When bimodular networks serve as decoders of multisensory integration, we extend the Bayesian framework to show that excitatory and inhibitory couplings encode attractive and repulsive priors, respectively. At low disparity, the bump positions decode the posterior means in the Bayesian framework, whereas at high disparity, multiple steady states exist. In the regime of multiple steady states, the less stable state can be accessed if the input causing the more stable state arrives after a sufficiently long delay. When one input is moving, the bump in the corresponding module is pinned when the moving stimulus is weak, unpinned at intermediate stimulus strength, and tracks the input at strong stimulus strength, and the stimulus strengths for these transitions increase with the velocity of the moving stimulus. These results are important to understanding multisensory integration of static and dynamic stimuli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available