4.6 Article

Curvature and confinement effects on chiral liquid crystal morphologies

Journal

SOFT MATTER
Volume 19, Issue 32, Pages 6066-6073

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3sm00437f

Keywords

-

Ask authors/readers for more resources

This paper investigates the morphologies that arise when chiral liquid crystals (ChLCs) are confined in toroidal and cylindrical cavities. By annealing a Landau-de Gennes free energy, the equilibrium morphologies were obtained. It was found that curvature introduces helical features, with the progression from Double Twist to Chiral Ribbons and ultimately to Helical Blue Phases (BP). Chiral ribbons are examined as promising candidates for driven assembly due to their tunability and robustness.
Chiral liquid crystals (ChLCs) exhibit an inherent twist that originates at the molecular scale and can extend over multiple length scales when unconstrained. Under confinement, the twist is thwarted, leading to formation of defects in the molecular order that offer distinct optical responses and opportunities for colloidal driven assembly. Past studies have explored spheroidal confinement down to the nanoscopic regime, where curved boundaries produce surface defects to accommodate topological constraints and restrict the propagation of cuboidal defect networks. Similarly, strict confinement in channels and shells has been shown to give rise to escaped configurations and skyrmions. However, little is known about the role of extrinsic curvature in the development of cholesteric textures and Blue Phases (BP). In this paper, we examine the palette of morphologies that arises when ChLCs are confined in toroidal and cylindrical cavities. The equilibrium morphologies are obtained following an annealing strategy of a Landau-de Gennes free energy functional. Three dimensionless groups are identified to build phase diagrams: the natural twist, the ratio of elastic energies, and the circumscription of a BP cell. Curvature is shown to introduce helical features that are first observed as a Double Twist, and progress to Chiral Ribbons and, ultimately, Helical BP and BP. Chiral ribbons are examined as useful candidates for driven assembly given their tunability and robustness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available