4.8 Article

Construction of pyrroles, furans and thiophenes via intramolecular cascade desulfonylative/dehydrogenative cyclization of vinylidenecyclopropanes induced by NXS (X = I or Br)

Journal

CHEMICAL SCIENCE
Volume 14, Issue 28, Pages 7648-7655

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3sc01542d

Keywords

-

Ask authors/readers for more resources

This paper presents an efficient synthetic strategy for the rapid construction of multisubstituted pyrroles, furans, and thiophenes via NXS mediated desulfonylative/dehydrogenative cyclization of vinylidenecyclopropanes. The method offers advantages such as a wide substrate range, high efficiency, and synthetic usefulness of the heterocyclic products under metal-free and mild conditions. The derivatization of pyrrole products and the preparation of functional molecules demonstrate the synthetic potential of the products as platform molecules. The reaction mechanism has been investigated through control experiments and DFT calculations.
Pyrroles, furans, and thiophenes are important structural motifs in biologically active substances, pharmaceuticals and functional materials. In this paper, we disclose an efficient synthetic strategy for the rapid construction of multisubstituted pyrroles, furans, and thiophenes via NXS mediated desulfonylative/dehydrogenative cyclization of vinylidenecyclopropanes (VDCPs). The advantages of this method include wide substrate range, high efficiency and synthetic usefulness of the heterocyclic products under metal-free and mild conditions. The derivatization of pyrrole products and the preparation of functional molecules successfully demonstrated the synthetic potential of the products as platform molecules. The reaction mechanism has been investigated on the basis of control experiments and DFT calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available