4.8 Article

Article Short-term plasticity, multimodal memory, and logical responses mimicked in stretchable hydrogels

Journal

MATTER
Volume 6, Issue 2, Pages 429-444

Publisher

CELL PRESS
DOI: 10.1016/j.matt.2022.11.001

Keywords

-

Ask authors/readers for more resources

Stretchable hydrogels have been developed to interact with biological interfaces, but lack the intelligence of biological systems. To overcome this limitation, researchers have developed asymmetric trimeric hydrogels inspired by biological ion channels. These hydrogels can sense external stimuli, encode logical responses, emulate synaptic plasticity, and even memorize images in a multistore model. Moreover, they are transparent, stretchable, and work stably under large deformation, overcoming the limitations of conventional electronic devices. This bionic design opens up possibilities for intelligent hydrogel ionotronics and bridges the gap between human-machine interfaces.
Stretchable hydrogels are developed to interact with biological interfaces through ionic signaling. However, the intelligence of artificial hydrogels is far less powerful than biological systems. There is no channel to mediate complex ion flows in signal transduction, and thus the existing bulk hydrogels lack the ability to process and memorize information in a logical manner. Herein, inspired by the biological ion channels, we develop asymmetric trimerichydrogels to control the spatiotemporal distribution of ion flows. The hydrogels can sense external stimuli, encode logical responses, emulate synaptic plasticity, and even memorize images in a multistore model. More intriguingly, they are transparent, stretchable, and work stably under large deformation. They overcome the optical and mechanical limitations encountered by conventional electronic devices. The bionic design paves an avenue for intelligent hydrogel ionotronics and will bridge the gap between human-machine interfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available