4.6 Article

A new scheme of the fractional-order super twisting algorithm for asynchronous generator-based wind turbine

Journal

ENERGY REPORTS
Volume 9, Issue -, Pages 6311-6327

Publisher

ELSEVIER
DOI: 10.1016/j.egyr.2023.05.267

Keywords

Fractional calculus theory; Super twisting algorithm; Asynchronous generator; Indirect field -oriented control

Categories

Ask authors/readers for more resources

This paper improves the performance and efficacy of the super-twisting algorithm (STA) by using fractional calculus theory (FCT) and proposes a new form of the STA controller based on FCT technique for controlling the asynchronous generator (AG)-based wind power system (WPS). Objective functions are calculated to improve the characteristics and quality of reactive power, active power, and electric current. The proposed STA-FCT controller shows better performance and improves the features of indirect field-oriented control (IFOC) for AG-based WPS.
In this paper, the performance and efficacy of the super-twisting algorithm (STA) were improved by using fractional calculus theory (FCT). A new form is given to the STA controller based on the FCT technique to control the asynchronous generator (AG)-based wind power system (WPS). With the main focus on improving the characteristics and quality of reactive power, active power, and electric current, objective functions are calculated, including indices of ripples in active and reactive power, current and torque, and the total harmonic distortion (THD) value of the stator current. In this work, this proposed STA-FCT controller is used to obtain better performance and improve the features of the indirect field-oriented control (IFOC) for AG-based WPS. The designed AG control model has been validated using Matlab/Simulink software. In the first test, the THD of current, active power, and reactive power ripples of the AG-WPS was improved by 99.46%, 96.74%, and 94.07%, respectively. Also, the designed IFOC-STA-FCT technique provided a better dynamic response than the traditional IFOC technique. The robustness of the designed strategy was tested in the second test. In this test, the designed IFOC strategy significantly minimized the active and reactive power ripples compared to the classical IFOC technique (64.34% and 53.56%), and the THD value was tolerably decreased (98.85%) compared to the traditional IFOC strategy. While the dynamic response is always better in the case of the designed IFOC-STA-FCT technique.& COPY; 2023 The Author(s). Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available