3.8 Proceedings Paper

Enhancing reliability of a strong physical unclonable function (PUF) solution based on virgin-state phase change memory (PCM)

Publisher

IEEE
DOI: 10.1109/IRPS48203.2023.10117586

Keywords

physical unclonable function; phase change memory; non-volatile memory; reliability modeling; hardware security

Ask authors/readers for more resources

In the era of the internet of things (IoT), hardware physical unclonable functions (PUFs) are crucial for system on chip (SoC) authentication. Identifying physical entropy sources is essential for developing low-cost, low-power, reliable PUFs. This work introduces MVPUF, a new PUF circuit based on embedded PCM, which utilizes the random virgin state of the PCM and a novel selection technique for challenge-response pairs (CRPs), demonstrating improved reliability compared to PUFs based on resistive switching memory (RRAM).
In the era of the internet of things (IoT), hardware physical unclonable functions (PUFs) have become an essential feature for authentication of any system on chip (SoC). Identifying physical entropy sources is essential for developing low-cost, low-power, highly reliable PUFs. This work presents a new PUF circuit based on embedded PCM, called MVPUF. The new PUF relies on the random virgin state of the PCM combined with a new selection technique of challenge-response pairs (CRPs), thus showing better reliability compared to PUFs based on resistive switching memory (RRAM).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available