4.5 Article

Renal mitochondrial dysfunction in ovine experimental sepsis-associated acute kidney injury

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 324, Issue 6, Pages F571-F580

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00294.2022

Keywords

acute kidney injury; mitochondria; sepsis

Ask authors/readers for more resources

In an ovine model of sepsis with acute kidney injury, renal mitochondrial dysfunction was demonstrated, characterized by a reduction in respiratory control ratio and an increased complex II/complex I ratio. However, no changes in mitochondrial efficiency or uncoupling were found, which could not explain the disturbed relation between renal oxygen consumption and Na thorn transport.
Sheep develop sepsis-associated acute kidney injury (SA-AKI) during experimental sepsis despite normal to increased renal oxygen delivery. A disturbed relation between oxygen consumption (V_ O2) and renal Na thorn transport has been demonstrated in sheep and in clinical studies of AKI, which could be explained by mitochondrial dysfunction. We investigated the function of isolated renal mitochondria compared with renal oxygen handling in an ovine hyperdynamic model of SA-AKI. Anesthetized sheep were randomized to either an infusion of live Escherichia coli with resuscitative measures (sepsis group; n = 13 animals) or served as controls (n = 8 animals) for 28 h. Renal V_ O2 and Na thorn transport were repeatedly measured. Live cortical mitochondria were isolated at baseline and at the end of the experiment and assessed in vitro with high-resolution respirometry. Sepsis markedly reduced creatinine clearance, and the relation between Na thorn transport and renal V_ O2 was decreased in septic sheep compared with control sheep. Cortical mitochondrial function was altered in septic sheep with a reduced respiratory control ratio (6.0 & PLUSMN; 1.5 vs. 8.2 & PLUSMN; 1.6, P = 0.006) and increased complex II-to-complex I ratio during state 3 (1.6 & PLUSMN; 0.2 vs. 1.3 & PLUSMN; 0.1, P = 0.0014) mainly due to decreased complex I-dependent state 3 respiration (P = 0.016). However, no differences in renal mitochondrial efficiency or mitochondrial uncoupling were found. In conclusion, renal mitochondrial dysfunction composed of a reduction of the respiratory control ratio and an increased complex II/complex I relation in state 3 was demonstrated in an ovine model of SA-AKI. However, the disturbed relation between renal V_ O2 and renal Na thorn transport could not be explained by a change in renal cortical mitochondrial efficiency or uncoupling.NEW & NOTEWORTHY We studied the function of renal cortical mitochondria in relation to oxygen consumption in an ovine model of sepsis with acute kidney injury. We demonstrated changes in the electron transport chain induced by sepsis consisting of a reduced respiratory control ratio mainly by a reduced complex I-mediated respiration. Neither an increase in mitochondrial uncoupling nor a reduction in mitochondrial efficiency was demonstrated and cannot explain why oxygen consumption was unaffected despite reduced tubular transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available