4.6 Article

Influence of near-surface oxide layers on TiFe hydrogenation: mechanistic insights and implications for hydrogen storage applications

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume -, Issue -, Pages -

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ta02205f

Keywords

-

Ask authors/readers for more resources

This study investigates the growth and nature of oxide films on the surface of TiFe intermetallic compound using first-principles methods. Different structures and temperature effects of oxide phases are studied in detail. The interaction between the oxidized surface and hydrogen is evaluated, providing important insights for the design of activation methods for TiFe and related materials as hydrogen storage materials.
The inevitable formation of passivating oxide films on the surface of the TiFe intermetallic compound limits its performance as a stationary hydrogen storage material. Extensive experimental efforts have been dedicated to the activation of TiFe, i.e. oxide layer removal prior to utilization for hydrogen storage. However, development of an efficient activation protocol necessitates a fundamental understanding of the composition and structure of the air-exposed surface and its interaction with hydrogen, which is currently absent. Therefore, in this study we explored the growth and nature of oxide films on the most exposed TiFe surface (110) in depth using static and dynamic first-principles methods. We identified the lowest energy structures for six oxygen coverages up to approximately 1.12 nm of thickness with a global optimization method and studied the temperature effects and structural evolution of the oxide phases in detail via ab initio molecular dynamics (AIMD). Based on structural similarity and coordination analysis, motifs for TiO2 and TiFeO3 as well as Ti(FeO2)(x) (x = 2, 3 or 5) phases were identified. On evaluating the interaction of the oxidized surface with hydrogen, a minimal energy barrier of 0.172 eV was predicted for H-2 dissociation while H migration from the top of the oxidized surface to the bulk TiFe was limited by several high-lying energy barriers above 1.4 eV. Our mechanistic insights will prove themselves valuable for informed designs towards new activation methods of TiFe and related systems as hydrogen storage materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available