4.8 Article

Controllable mitochondrial aggregation and fusion by a programmable DNA binder

Journal

CHEMICAL SCIENCE
Volume 14, Issue 30, Pages 8084-8094

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2sc07095b

Keywords

-

Ask authors/readers for more resources

Researchers have developed a synthetic DNA binder that can induce mitochondrial aggregation and fusion in living cells. This DNA binder has shown potential for repairing ROS-stressed neuron cells and can be further customized to achieve stimuli-triggered mitochondrial aggregation and fusion. The researchers believe that this new DNA regulator system can be a powerful tool for subcellular manipulation and precision therapy.
DNA nanodevices have been feasibly applied for various chemo-biological applications, but their functions as precise regulators of intracellular organelles are still limited. Here, we report a synthetic DNA binder that can artificially induce mitochondrial aggregation and fusion in living cells. The rationally designed DNA binder consists of a long DNA chain, which is grafted with multiple mitochondria-targeting modules. Our results indicated that the DNA binder-induced in situ self-assembly of mitochondria can be used to successfully repair ROS-stressed neuron cells. Meanwhile, this DNA binder design is highly programmable. Customized molecular switches can be easily implanted to further achieve stimuli-triggered mitochondrial aggregation and fusion inside living cells. We believe this new type of DNA regulator system will become a powerful chemo-biological tool for subcellular manipulation and precision therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available