4.5 Article

Evaluation of two composting strategies for making pig slurry solid fraction suitable for pelletizing

Journal

ATMOSPHERIC POLLUTION RESEARCH
Volume 7, Issue 2, Pages 288-293

Publisher

TURKISH NATL COMMITTEE AIR POLLUTION RES & CONTROL-TUNCAP
DOI: 10.1016/j.apr.2015.10.001

Keywords

Carbon dioxide; Methane; Nitrous oxide; Ammonia; Pig manure

Funding

  1. Italian Ministry of Agriculture and Forestry [DM 29638/7818/10]

Ask authors/readers for more resources

In this study, two composting strategies (not turned and turned windrows) of pig slurry solid fraction (SF) were evaluated and compared in terms of their suitability to obtain a composted manure appropriate for further pelletizing (i.e., moisture content <40%). The effect of the two composting strategies on carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and ammonia (NH3) emissions were also investigated. Six identical SF windrows of approximately 4 m(3) and 1800 kg were set up outside, on a concrete pad in an open-sided, roofed facility, and composted for a period of 72 days. During the experimental period, three SF windrows were composted unturned (NTW), while the others three SF windrows were turned (TW) six times: at day 7, 16, 28, 35, 50 and 57. Carbon dioxide, methane, nitrous oxide and ammonia emissions were measured three times a week for the first 3 weeks and twice per week thereafter for the 72 days of composting. In correspondence of each turning operation, gases emissions rates from TW, were evaluated two times: before and immediately after turning. Due to the production of heat generated during the composting process, high losses of water occurred from both NTW and TW. However, at the end of the trial the average moisture content in composted manure from NTW and from TW resulted, respectively, 46.7% and 34.6%. Therefore, under the specific conditions adopted in this study, composting of pig slurry SF in NTW did not give a suitable product for further pelletizing. In addition, composted manure from NTW resulted in significantly (p < 0.05) lower total nitrogen (2.9% vs 3.4%) and NO3-N (714 mg kg(-1) vs 1358 mg kg(-1)) content. However, in terms of CO2-eq, total gaseous emissions recorded over 72 days of trial from TW (120.4 kg CO2-eq. t(-1)) were approximately 95% higher as compared to those (64.7 kg CO2-eq. t(-1)) obtained from NTW. Copyright (C) 2015 Turkish National Committee for Air Pollution Research and Control. Production and hosting by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available