4.5 Article

Prediction of nitrogen oxides emissions at the national level based on optimized artificial neural network model

Journal

AIR QUALITY ATMOSPHERE AND HEALTH
Volume 10, Issue 1, Pages 15-23

Publisher

SPRINGER
DOI: 10.1007/s11869-016-0403-6

Keywords

NOx; Emission prediction; ANN; Correlation analysis; Variance inflation factor

Funding

  1. Ministry of Education, Science and Technological Development of the Republic of Serbia [172007]

Ask authors/readers for more resources

Nitrogen oxides (NOx) emissions into the atmosphere have multiple negative effects on the environment and effects directly and indirectly on human health. This paper describes the development of a model for NO (x) emission prediction at the national level based on artificial neural networks (ANNs) and on widely available sustainability, industrial, and economical parameters as input variables. In this study, 11 sustainability, industrial, and economical parameters were chosen as potential input variables. The ANN models were trained, validated, and tested with available data for 17 European countries, USA, China, Japan, Russia, and India for the years 2001 to 2008. The ANN modeling was performed using general regression neural network (GRNN), and correlation and variance inflation factor (VIF) analysis were applied to reduce the number of input variables. The best results were obtained using the selection of inputs based on the correlation between input variables, which provided a more accurate prediction than the GRNN model created with all initial selected input variables. Sensitivity analysis showed that the input variables with the largest influences on the GRNN model results were (in descending order) electricity production from oil sources, agricultural land, fossil fuel energy consumption, number of vehicles, gross domestic product, energy use, and electricity production from coal sources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available