4.7 Article

Polydopamine-Functionalized Graphene Oxide Loaded with Gold Nanostars and Doxorubicin for Combined Photothermal and Chemotherapy of Metastatic Breast Cancer

Journal

ADVANCED HEALTHCARE MATERIALS
Volume 5, Issue 17, Pages 2227-2236

Publisher

WILEY
DOI: 10.1002/adhm.201600283

Keywords

chemotherapy; dopamine; gold nanostar; graphene oxide; photothermal therapy

Funding

  1. National Basic Research Program of China [2013CB932704]
  2. National Natural Science Foundation of China [21305047, 21375040]

Ask authors/readers for more resources

Breast cancer is the leading cancer type diagnosed in the female population, and cancer metastasis is the main reason for cancer-caused mortality. A novel nanoplatform is herein presented integrating polydopamine-functionalized nanosized reduced graphene oxide (NRGO), gold nanostars (GNS), and doxorubicin (DOX) (denoted as NRGO-GNS@DOX) for combinational treatment of metastatic breast cancer. Upon localized near infrared (NIR) laser irradiation, the NRGO-GNS@DOX nanocomposites induce significant cytotoxicity in 4T1 breast cancer cells due to a cumulative therapy effect of NRGO-GNS-elicited hyperthermia and DOX-induced cytotoxicity. Antitumor studies in orthotopic 4T1 breast tumor-bearing nude mice demonstrate that NRGO-GNS@DOX in combination with NIR laser irradiation inhibit the tumor growth and suppress the lung metastasis. Contribution of DOX-caused apoptosis of the cancer cells and hyperthermia-induced deconstruction of the tumor-associated blood vessels may account for the superior antitumor performance of the NRGO-GNS@DOX nanocomposites. These results imply a good potential of NRGO-GNS@DOX for combined photothermal and chemotherapy of the metastatic cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available