4.8 Article

Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 16, Issue 9, Pages 3825-3836

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ee00413a

Keywords

-

Ask authors/readers for more resources

Researchers propose a novel intermediate phase to assist the crystallization strategy in fabricating high-quality perovskite films. By incorporating PFCl and utilizing SMI post-treatment, nonradiative recombination losses are minimized, resulting in improved efficiency and stability of solar cells.
The inverted formamidinium (FA)-rich perovskite solar cells possess great potential in realizing high power conversion efficiency (PCE) and excellent stability. However, the uncontrollable crystallization and poor film quality of FA-rich perovskites are the main obstacles to further advancing photovoltaic performance. Here, we first propose a novel intermediate phase for assisting the crystallization strategy to fabricate high-quality perovskite films. After incorporating phenformin hydrochloride (PFCl) into the precursor solution, the intermediate phase PFCl & BULL;FAI decreases the generation of the & delta; yellow phase and promotes the orientational growth of the & alpha;-phase perovskite during crystallization. Combining multi-active-site S-methylisothiosemicarbazide hydroiodide (SMI) post-treatment, the bulk and interfacial trap-assisted nonradiative recombination losses are minimized, which is ascribed to much improved crystallization, reduced defects and released residual stress. As a result, the devices with PFCl@SMI demonstrate maximum PCEs of 24.67% (0.09 cm(2)) and 22.48% (1 cm(2)). The unencapsulated target devices exhibit promising thermal and light stabilities, retaining 84% of their initial PCE after 1008 h of continuous light illumination and 90% of their original PCE after 864 h of continuous heating at 85 & DEG;C. This work provides valuable guidelines for minimizing bulk and interfacial nonradiative recombination losses by rational organic salt engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available