4.7 Article

Dried and Redispersible Cellulose Nanocrystal Pickering Emulsions

Journal

ACS MACRO LETTERS
Volume 5, Issue 2, Pages 185-189

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsmacrolett.5b00919

Keywords

-

Funding

  1. NSERC through the CREATE Biointerfaces Training Program Grant

Ask authors/readers for more resources

The effect of tannic acid (TA) and water-soluble cellulose derivatives on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. The potential to both fully dry CNC-stabilized emulsions and to redisperse the dried emulsions in water is demonstrated. When CNCs are mixed with excess adsorbing polymer, either methyl cellulose or hydroxyethyl cellulose, followed by emulsification with corn oil, oil-in-water emulsions can be transformed without oil leakage into solid dry emulsions via freeze-drying. However, these dry emulsions exhibit droplet coalescence within the solid matrix and thus cannot be redispersed. Addition of TA (after emulsification) imparts dispersibility to the dried emulsions due to complexation between the cellulose derivatives and TA which condenses the shell around the oil droplets. When dried emulsions with TA are placed in water, the emulsion droplets redisperse readily without the need for high energy mixing, and minimal change in emulsion droplet size is observed by Mastersizer and confocal microscopy. Therefore, the simple addition of two sustainable components to CNC Pickering emulsions (i.e., TA and methyl cellulose or hydroxyethyl cellulose) has led to the first dried and redispersible CNC-based emulsions with oil content as high as 94 wt %. These processing abilities will likely extend the use of these surfactant-free, green, and potentially edible emulsions to new food, cosmetic, and pharmaceutical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available