4.6 Article

Towards a realistic prediction of catalyst durability from liquid half-cell tests

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 25, Issue 30, Pages 20533-20545

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3cp02847j

Keywords

-

Ask authors/readers for more resources

Liquid half-cell measurements are useful for determining parameters of electro-catalysts, but their applicability to real-world systems is uncertain. This study conducted a voltage cycling accelerated stress test (AST) and found that the loss of electrochemically active surface area (ECSA) is enhanced at higher temperatures and with a high ionomer/carbon mass ratio. The results suggest that liquid half-cell based ASTs can provide application-relevant predictions of catalyst durability.
Liquid half-cell measurements provide a convenient laboratory method for determining relevant parameters of electro-catalysts applied in e.g. polymer electrolyte membrane fuel cells. While these measurements may be effective in certain contexts, their applicability to real-world systems, such as single-cells in a membrane electrode assembly (MEA) configuration, is not always clear. This is particularly true when assessing the stability of these systems through accelerated stress tests (ASTs). Due to different electrode compositions and operating conditions, nanoscale degradation proceeds differently. Nevertheless, given the high demands of MEA measurements in terms of time, testing equipment complexity, and amount of catalyst material, application-relevant predictions of catalyst durability from liquid half-cell tests are highly desirable. This study combines electrochemical and nanoparticle analysis based on transmission electron microscopy to conduct a typical voltage cycling AST for rotating disc electrode (RDE) measurements, showing that the loss of the electrochemically active surface area (ECSA) of the used Pt/Vulcan catalyst is strongly enhanced at 80 & DEG;C compared to room temperature, which goes along with increased nanoparticle coarsening. Additionally, a high ionomer/carbon mass ratio (I/C = 0.7) accelerates the ECSA loss, and further investigations of its influence suggest a combination of several factors, including the high local proton concentration and the presence of adsorbing anions. At the same temperature (80 & DEG;C) and I/C ratio (0.7), the ECSA loss vs. AST cycle number of the Pt/Vulcan catalyst is essentially identical for a voltage cycling AST conducted in either an RDE half-cell or an MEA configuration, suggesting that liquid electrolyte half-cell based ASTs can provide application-relevant results. Thus, our study points out a way for predicting the stability of electro-catalysts in MEAs based on RDE experiments that require less specialized equipment and only & mu;g-quantities of catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available