4.7 Article

Acid tolerance of lactate-utilizing bacteria of the order Bacteroidales contributes to prevention of ruminal acidosis in goats adapted to a high-concentrate diet

Journal

ANIMAL NUTRITION
Volume 14, Issue -, Pages 130-140

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.aninu.2023.05.006

Keywords

Ruminal microbiome; Ruminal acidosis; Acid tolerance; Lactate metabolism

Ask authors/readers for more resources

The rapid accumulation of organic acids, particularly lactate, is believed to be the main cause of ruminal acidosis (RA) in ruminants fed high-concentrate diets. However, the mechanisms behind this phenomenon are still not well understood. This study investigated the changes in ruminal microbiome and acidosis in goats fed diets with increasing concentrate portions. The results showed that an increase in dietary concentrate led to a sharp decrease in the abundance and expression of genes encoding lactate dehydrogenase, which is responsible for the conversion of pyruvate to lactate. These changes were attributed to specific bacterial groups and have important implications for the prevention of ruminal acidosis.
The rapid accumulation of organic acids, particularly lactate, has been suggested as the main cause of ruminal acidosis (RA) for ruminants fed high-concentrate diets. Previous research has shown that a gradual shift from low-to high-concentrate diets within 4 to 5 weeks effectively reduces the risk for RA. However, the mechanisms remain unknown. In this study, 20 goats were randomly allocated into four groups (n 1/4 5) and fed with a diet containing a weekly increasing concentrate portion of 20%, 40%, 60%, and 80% over 28 d. At d 7, 14, 21, and 28, one group (named C20, C40, C60, and C80 according to the last concentrate level that they received) was killed and the ruminal microbiome was collected. Ruminal acidosis was not detected in any of the goats during the experiment. Nonetheless, ruminal pH dropped sharply from 6.2 to 5.7 (P < 0.05) when dietary concentrate increased from 40% to 60%. A combined metagenome and metatranscriptome sequencing approach identified that this was linked to a sharp decrease in the abundance and expression of genes encoding nicotinamide adenine dinucleotide (NAD)-dependent lactate dehydrogenase (nLDH), catalyzing the enzymatic conversion of pyruvate to lactate (P < 0.01), whereas the expression of two genes encoding NAD-independent lactate dehydrogenase (iLDH), catalyzing lactate oxidation to pyruvate, showed no significant concomitant change. Abundance and expression alterations for nLDH-and iLDH-encoding genes were attributable to bacteria from Clostridiales and Bacteroidales, respectively. By analyzing the gene profiles of 9 metagenome bins (MAG) with nLDH-encoding genes and 5 MAG with iLDH-encoding genes, we identified primary and secondary active transporters as being the major types of sugar transporter for lactate-producing bacteria (LPB) and lactate-utilizing bacteria (LUB), respectively. Furthermore, more adenosine triphosphate was required for the phosphorylation of sugars to initiate their catabolic pathways in LPB compared to LUB. Thus, the low dependence of sugar transport systems and catabolic pathways on primary energy sources supports the acid tolerance of LUB from Bacteroidales. It favors ruminal lactate utilization during the adaptation of goats to a high-concentrate diet. This finding has valuable implications for the development of measures to prevent RA. & COPY; 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available