4.7 Article

Sulphonated poly(ethersulfone)/carbon nano-onions-based nanocomposite membranes with high ion-conducting channels for salt removal via electrodialysis

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-023-28570-1

Keywords

Sulphonated poly(ethersulfone); Carbon nano onions; Nanocomposite membrane; Electrodialysis; Water desalination

Ask authors/readers for more resources

In this study, carbon nano onions (CNO)-based sulphonated poly(ethersulfone) (SPES) composite membranes were synthesized for water desalination by varying CNO content in the SPES matrix. The physico- and electrochemical properties of the nanocomposite membranes were evaluated and compared to pristine SPES. The integration of CNO nanoparticles into the SPES matrix enhanced the ion-conducting channels, resulting in improved water uptake, ion exchange membrane, and ionic conductivity values.
Herein, we are reporting the carbon nano onions (CNO)-based sulphonated poly(ethersulfone) (SPES) composite membranes by varying CNO content in SPES matrix for water desalination applications. CNOs were cost-effectively synthesized using flaxseed oil as a carbon source in an energy efficient flame pyrolysis process. The physico- and electrochemical properties of nanocomposite membranes were evaluated and compared to pristine SPES. Moreover, the chemical characterisation of composite membranes and CNOs were illustrated using techniques such as nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA) and universal tensile machine (UTM). In the series of nanocomposite membranes, SPES-0.25 composite membrane displayed the highest water uptake (WU), ion exchange membrane (IEC) and ionic conductivity (IC) values that were enhanced by 9.25%, similar to 44.78% and similar to 6.10%, respectively, compared to pristine SPES membrane. The electrodialytic performance can be achieved maximum when membranes possess low power consumption (P-C) and high energy efficiency (E-e). Therefore, the value of E-e and P-c for SPES-0.25 membrane has been determined to be 99.01 +/- 0.97% and 0.92 +/- 0.01 kWh kg(-1), which are 1.12 and 1.11 times higher than the pristine SPES membrane. Hence, integrating CNO nanoparticles into the SPES matrix enhanced the ion-conducting channels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available