4.6 Article

Morphology evolution of the aluminum surface in a fluorine-containing environment

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 25, Issue 31, Pages 21045-21053

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3cp02397d

Keywords

-

Ask authors/readers for more resources

The thermodynamic and kinetic behaviors of F and O adatoms on typical Al surfaces have been systematically investigated. The results show that there is attraction between F-O pairs on the Al(111) surface, while repulsion exists between F adatoms. At low temperature and low coverage, F adatoms are dispersed in the hexagonal islands of O adatoms, leading to serious surface deformation as coverage increases. The study also reveals that F adatoms have easier migration on the surface and penetration into the subsurface compared to O adatoms.
The interaction between aluminum (Al) and F and O atoms is essential to understand the etching process of Al and alumina (Al2O3) by fluorine-containing gases. In addition, it also has an influence on the corrosion behavior of Al devices, e.g., the Al collector in lithium-ion batteries operates in fluorine-containing electrolytes. However, the understanding of the structural evolution of the Al surface by fluorination at the atomistic level still remains elusive. Here, the thermodynamic and kinetic behaviors of F adatoms as well as co-adsorbed F and O adatoms on typical Al surfaces have been systematically investigated by combining density functional theory (DFT) calculations, canonical Monte Carlo (CMC) simulations and reactive molecular dynamics (RMD) simulations. The results of DFT calculations indicate that there is a repulsion (about 0.07 eV on Al(111) and Al(110), and 0.7 eV on Al(100)) between the first nearest neighboring (1NN) F adatoms, while an attraction of 0.14 eV on Al(111) exists within a 1NN F-O pair. CMC simulations reveal that the configurations of co-adsorbed F and O adatoms on the Al(111) surface at medium to low temperature (<600 K) and low total coverage (<0.2 monolayer, ML) have F adatoms dispersed in the hexagonal islands of O adatoms due to the attraction within the O-O and F-O pairs and the repulsion between F adatoms. As the coverage increases, the surface undergoes serious deformation. The average 1NN coordination numbers (1st CN) of O-to-O, F-to-O and F-to-F are six, three and zero, respectively. As the temperature increases, the interactions among adsorbates begin to be disrupted: the 1st CNs of O-to-O and F-to-O decrease, while that of F-to-F increases. The O-F hexagonal pattern remains until above the Al melting temperature (>1200 K). For F adatoms, both their migration on the surface and the penetration into the subsurface are easier than those of O adatoms, confirmed by both the DFT and RMD simulations. Our study on the co-adsorbates with opposite lateral interactions is instructive for understanding the thermal etching of Al and Al2O3 by fluorine-containing compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available