4.5 Article

Derivation of design rules for innovative shear connectors in steel-concrete composites through the systematic use of non-linear finite element analysis (FEA)

Journal

STRUCTURAL CONCRETE
Volume 17, Issue 4, Pages 646-655

Publisher

ERNST & SOHN
DOI: 10.1002/suco.201500217

Keywords

composite construction; shear connector; Finite element analysis

Ask authors/readers for more resources

Today, the development of innovative shear connectors for steel-concrete composites is accompanied by a large number of experimental investigations, which are obligatory when proposing suitable design formula and carving out their limitations of use. Using the example of the so-called pin connector, the present paper illustrates to what extent validated finite element models of novel shear connectors can be used to replace expensive and time-consuming shear tests and how these finite element models can support the deduction of design concepts. The pin connector considered was developed for connecting steel sections to very slender high-strength concrete slabs in which conventional shear connectors such as headed studs cannot be used due to the limited embedment depth. In order to clarify the shear behaviour and load-carrying mechanisms of these novel connectors, non-linear finite element models were set up using the commercial FE software Abaqus. Subsequently, the FE models were used to perform systematic parametric studies. This paper describes the numerical results and also explains the stepwise development of an entire engineering model for determining the longitudinal shear capacity of small-scale pin connectors, including all the necessary limitations of use. The proposed modelling strategy and the methodology for the deduction of design rules can be transferred and assigned to other types of shear connectors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available