4.7 Article

A gelatin hydrogel nonwoven fabric improves outcomes of subcutaneous islet transplantation

Journal

SCIENTIFIC REPORTS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-39212-4

Keywords

-

Ask authors/readers for more resources

A novel bioabsorbable gelatin hydrogel nonwoven fabric (GHNF) can improve subcutaneous islet transplantation by compensating and protecting islet function through extracellular matrix and various growth factors, rather than enhanced neovascularization.
Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously reported that a recombinant peptide (RCP) enhances subcutaneous islet engraftment. However, it is impractical for clinical use because RCP must be removed when transplanting islets. We herein investigated whether a novel bioabsorbable gelatin hydrogel nonwoven fabric (GHNF) could improve subcutaneous islet engraftment. A silicon spacer with or without GHNF was implanted into the subcutaneous space of diabetic mice. Syngeneic islets were transplanted into the pretreated space or intraportally (Ipo group). Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, CT angiography and gene expression were evaluated. The cure rate and glucose tolerance of the GHNF group were significantly better than in the control and Ipo groups (p < 0.01, p < 0.05, respectively). In the GHNF group, a limited increase of vWF-positive vessels was detected in the islet capsule, whereas laminin (p < 0.05), collagen III and IV were considerably enhanced. TaqMan arrays revealed a significant upregulation of 19 target genes (including insulin-like growth factor-2) in the pretreated space. GHNF markedly improved the subcutaneous islet transplantation outcomes, likely due to ECM compensation and protection of islet function by various growth factors, rather than enhanced neovascularization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available