4.6 Article

Attributing near-surface atmospheric trends in the Fram Strait region to regional sea ice conditions

Journal

CRYOSPHERE
Volume 17, Issue 8, Pages 3115-3136

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/tc-17-3115-2023

Keywords

-

Ask authors/readers for more resources

Arctic sea ice has been decreasing in all seasons due to rapid atmospheric warming. This study focuses on the wider Fram Strait region and analyzes the connection between observed near-surface variables and local sea ice conditions. Reanalysis data and sea ice concentrations are used for the analysis. The results show decreasing sea ice cover and increasing temperature and humidity trends in the western Nansen Basin and Greenland sea region.
Arctic sea ice has declined in all seasons accompanied by rapid atmospheric warming. Here, the focus lies on the wider Fram Strait region where the connection between trends in observed near-surface variables (temperature, humidity, wind speed) and local sea ice conditions are analyzed. Reanalysis data from ERA5 and MERRA-2 and Special Sensor Microwave/Imager ARTIST Sea Ice (SSM/I-ASI) sea ice concentrations for the winters of 1992 to 2022 are used for the analyses.Two focus regions are identified for which trends are largest. In the western Nansen Basin (WNB), sea ice cover decreased by -10 % per decade with especially large open water areas in 2022, and temperature and humidity increased by up to 3.7 K and 0.29 gkg(-1) per decade, respectively. In the Greenland sea region (GRL), trends were slightly smaller, with -4.7 % per decade for sea ice and up to 1.3 K and 0.15 gkg(-1) per decade for temperature and humidity. Trends for wind speed were mostly not significant.As a next step, two typical flow directions for this region were studied: cold-air outbreaks with northerly winds originating from ice covered areas (off-ice flow) and warm-air intrusions with southerly winds from open ocean regions (on-ice flow). To identify possible relationships between sea ice changes and atmospheric trends, correlation maps were calculated, and the results for off- and on-ice flow were compared. Up to two thirds of the observed temperature and humidity variability in both regions are related to upstream sea ice variability and an influence of sea ice cover is still present up to 500 km downstream of the ice edge. In the marginal sea ice zone the impact of a decreasing sea ice cover in this region is largest for off-ice flow conditions during cold-air outbreaks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available