4.6 Article

Hierarchical Frequency-dependent Chance Constrained Unit Commitment for Bulk AC/DC Hybrid Power Systems with Wind Power Generation

Journal

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY
Volume 11, Issue 4, Pages 1053-1064

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.35833/MPCE.2022.000138

Keywords

Unit commitment; AC/DC hybrid power system; load frequency damping; reserve; wind power

Ask authors/readers for more resources

This paper proposes a frequency-dependent chance constrained unit commitment (FDCCUC) model that utilizes the operational frequency as a dispatching variable to enhance the load frequency damping (LFD) effect in wind-integrated power systems. The model allows load power to act as a supplemental reserve to upgrade the wind power accommodation capability of the system. A hierarchically implemented searching algorithm is also proposed to protect private scheduling information in a bulk AC/DC hybrid power system. Simulation results validate the effectiveness of the FDCCUC model and hierarchical searching algorithm.
As the steady-state frequency of an actual power system decreases from its nominal value, the composite load of the system generally responds positively to lower power consumption, and vice versa. It is believed that this load frequency damping (LFD) effect will be artificially enhanced, i.e., sensitivities of loads with respect to operational frequency will increase, in future power systems. Thus, for wind-integrated power systems, this paper proposes a frequency-dependent chance constrained unit commitment (FDCCUC) model that employs the operational frequency as a dispatching variable so that the LFD effect-based load power can act as a supplemental reserve. Because the frequency deviation is safely restricted, this low-cost reserve can be sufficiently exerted to upgrade the wind power accommodation capability of a power system that is normally confined by an inadequate reserve to cope with uncertain wind power forecasting error. Moreover, when the FDCCUC model is applied to a bulk AC/DC hybrid power system consisting of several independently operated regional AC grids interconnected by DC tie-lines, a hierarchically implemented searching algorithm is proposed to protect private scheduling information of the regional AC grids. Simulations on a 2-area 6-bus system and a 3-area 354-bus system verify the effectiveness of the FDCCUC model and hierarchical searching algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available