4.4 Article

Complex Brain-Heart Mapping in Mental and Physical Stress

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JTEHM.2023.3280974

Keywords

Brain-heart interplay; complexity; EEG; heart rate variability; fuzzy entropy

Ask authors/readers for more resources

This study investigates the functional brain-heart interplay (BHI) during mental and physical stress conditions. The results show that the brain mainly influences the heart through efferent signals, with vagal oscillations affected during mental stress and sympathovagal oscillations affected during physical stress.
Objective: The central and autonomic nervous systems are deemed complex dynamic systems, wherein each system as a whole shows features that the individual system sub-components do not. They also continuously interact to maintain body homeostasis and appropriate react to endogenous and exogenous stimuli. Such interactions are comprehensively referred to functional brain-heart interplay (BHI). Nevertheless, it remains uncertain whether this interaction also exhibits complex characteristics, that is, whether the dynamics of the entire nervous system inherently demonstrate complex behavior, or if such complexity is solely a trait of the central and autonomic systems. Here, we performed complexity mapping of the BHI dynamics under mental and physical stress conditions. Methods and procedures: Electroencephalographic and heart rate variability series were obtained from 56 healthy individuals performing mental arithmetic or cold-pressure tasks, and physiological series were properly combined to derive directional BHI series, whose complexity was quantified through fuzzy entropy. Results: The experimental results showed that BHI complexity is mainly modulated in the efferent functional direction from the brain to the heart, and mainly targets vagal oscillations during mental stress and sympathovagal oscillations during physical stress.Conclusion: We conclude that the complexity of BHI mapping may provide insightful information on the dynamics of both central and autonomic activity, as well as on their continuous interaction. Clinical impact: This research enhances our comprehension of the reciprocal interactions between central and autonomic systems, potentially paving the way for more accurate diagnoses and targeted treatments of cardiovascular, neurological, and psychiatric disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available