4.7 Article

Raman Spectroscopy Profiling of Splenic T-Cells in Sepsis and Endotoxemia in Mice

Journal

Publisher

MDPI
DOI: 10.3390/ijms241512027

Keywords

sepsis; Raman spectroscopy; infection; inflammation

Ask authors/readers for more resources

Sepsis is a life-threatening condition caused by an excessive and disproportionate immune response to an infection. This study used Raman spectroscopy to analyze the changes in splenic T-lymphocyte profiles during bacterial sepsis and hyperinflammatory endotoxemia. The results showed significant changes in DNA region of splenocytes during sepsis, indicating notable transcriptomic activity. Additionally, splenocytes exposed to high-dose lipopolysaccharide injection displayed significant protein and lipid profile changes, with variations in inflammation severity.
Sepsis is a life-threatening condition that results from an overwhelming and disproportionate host response to an infection. Currently, the quality and extent of the immune response are evaluated based on clinical symptoms and the concentration of inflammatory biomarkers released or expressed by the immune cells. However, the host response toward sepsis is heterogeneous, and the roles of the individual immune cell types have not been fully conceptualized. During sepsis, the spleen plays a vital role in pathogen clearance, such as bacteria by an antibody response, macrophage bactericidal capacity, and bacterial endotoxin detoxification. This study uses Raman spectroscopy to understand the splenic T-lymphocyte compartment profile changes during bona fide bacterial sepsis versus hyperinflammatory endotoxemia. The Raman spectral analysis showed marked changes in splenocytes of mice subjected to septic peritonitis principally in the DNA region, with minor changes in the amino acids and lipoprotein areas, indicating significant transcriptomic activity during sepsis. Furthermore, splenocytes from mice exposed to endotoxic shock by injection of a high dose of lipopolysaccharide showed significant changes in the protein and lipid profiles, albeit with interindividual variations in inflammation severity. In summary, this study provided experimental evidence for the applicability and informative value of Raman spectroscopy for profiling the immune response in a complex, systemic infection scenario. Importantly, changes within the acute phase of inflammation onset (24 h) were reliably detected, lending support to the concept of early treatment and severity control by extracorporeal Raman profiling of immunocyte signatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available