4.5 Article

Trimipramine Photo-Degradation in the Photo-Catalyst Baffled Reactor's UV/Sulfite/ZnO Redox Reaction System

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13369-023-08145-5

Keywords

Photo-degradation; Oxidative; Trimipramine; Reductive; Cost-effective

Ask authors/readers for more resources

The study examined the cost-effective degradation of trimipramine (TIR) using UV/Sulfite/ZnO (USZ) in both conventional and baffled photocatalytic reactors (BPCR). The optimal conditions for high TRI degradation (97.4%) were a 2:1:100 Sulfite/ZnO/TRI molar ratio, pH 7, and a 30-minute reaction time. In the BPCR reactor, the measured rate constant (k(obs)) and reaction rate (r(obs)) increased by approximately 17% and 50% respectively, as the TRI concentration increased. The intermediate materials formed were analyzed, and most of them were found to be simple linear compounds. The introduction of baffles in the reactor led to decreased electrical energy consumption and total system cost, while the UZS procedure effectively reduced BOD and COD levels.
The current work examines UV/Sulfite/ZnO (USZ) in reactor convectional (without baffles) and baffled photocatalytic reactors (BPCR) in order to cost-effectively photo-degrade trimipramine (TIR). The ideal conditions were 2:1:100 Sulfite/ZnO/TRI molar ratio, pH 7, and 30 min of reaction time for 97.4% TRI degradation. In the BPCR reactor, the measured rate constant (k(obs)) and reaction rate (r(obs)) both rise by around 17% and 50% as the TRI concentration is increased from 50 to 200 mgL(-1). The intermediate materials formed in three cases were examined by copper LC. Investigations showed that after 30 min, most of the intermediates became simple linear compounds such as hexane-1, 6-diol (C6H14O2), formaldehyde (CH2O), (E)-prop-1-en-1-yl-l2-azane (C3H6N), acetic acid C2H4O2. Electrical energy consumption (E-EO) decreased from 8.61 kWhm(3) for convectional reactor to 5.37 kWhm(3) for BPCR due to an increase in k(obs) and r(obs), for example, 200 mg L-1. As a result, the total cost of the system (TCS) decreased from 3.56 for convectional reactor to 1.22 $ for PCBR reactor. According to information gathered, the UZS procedure lowers the BOD and COD levels by 66 to 86.29% in 80-min reaction time, respectively. Additionally, the BOD/COD ratio starts out at 0.26 and increases to 0.6 after 30 min.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available