4.7 Article

Imprinting superconducting vortex footsteps in a magnetic layer

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep27159

Keywords

-

Funding

  1. Fonds de la Recherche Scientifique - FNRS
  2. ARC grant [13/18-08]
  3. French Community of Belgium
  4. Brazilian National Council for Scientific and Technological Development (CNPq)
  5. Sao Paulo Research Foundation (FAPESP) [2007/08072-0]
  6. program for scientific cooperation F.R.S.-FNRS-CNPq
  7. F.R.S.-FNRS (Research Fellowship)
  8. University of Liege
  9. EU in the context of the FP7-PEOPLE-COFUND-BeIPD project
  10. Mandat d'Impulsion Scientifique of the F.R.S.-FNRS

Ask authors/readers for more resources

Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux ( vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available