4.7 Article

Hydrothermal etching fabrication of TiO2@graphene hollow structures: mutually independent exposed {001} and {101} facets nanocrystals and its synergistic photocaltalytic effects

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep33839

Keywords

-

Funding

  1. National Natural Science Foundation of China [51272147]
  2. Natural Science Foundation of Shaanxi Province [2015JM5208]
  3. Graduate Innovation Fund of Shaanxi University of Science and Technology

Ask authors/readers for more resources

Highly exposed facets TiO2 attracts enormous attention due to its excellent separation effect of photogenerated electron-hole pairs and induced high performance of photocatalytic activity. Herein, a novel hydrothermal etching reaction was used to synthesize graphene-wrapped TiO2 hollow core-shell structures. Different with the reported co-exposed facets TiO2 single crystal nanoparticles, the present TiO2 core layer is composed by the mutually independent exposed {001} and {101} facets nanocrystals. Combined with the reduced graphene oxide shell layer, this graphene-wrapped TiO2 hollow core-shell structures formed a Z-scheme photocatalytic system, which possess simultaneously the high charge-separation efficiency and strong redox ability. Additionally, the as-prepared samples show a higher absorption property for organic molecules and visible light due to the presence of graphene. All of these unique properties ensure the excellent photocatalytic activity for the graphene-wrapped TiO2 hollow structures in the synergistic photo-oxidation of organic molecules and photo-reduced of Cr(VI) process. The TiO2 core composed with mutually independent exposed {001} and {101} facets nanocrystals is propose to play an important role in the fabrication of this Z-scheme photocatalytic system. Fabrication of Z-scheme photocatalytic system based on this unique exposed facets TiO2 nanocrystals will provides a new insight into the design and fabrication of advanced photocatalytic materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available