4.6 Article

Coherence buildup and laser thresholds from nanolasers to macroscopic lasers

Journal

PHYSICAL REVIEW A
Volume 107, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.107.063710

Keywords

-

Ask authors/readers for more resources

We derive nanolaser models that include coherent and incoherent variables and predict the existence of a laser threshold for both single- and multielectron systems. The increase in correlation between absorption and emission processes leads to self-sustained stimulated emission and the dominance of coherent emission. The first-order coherence increases steadily and reaches unity at or beyond threshold, while the transition towards coherent emission becomes sharper with increasing numbers of emitters and cavity modes.
We detail the derivation of nanolaser models that include coherent and incoherent variables and predict the existence of a laser threshold, irrespective of cavity size and emitter number, for both single- and multielectron systems. The growth in photon number in the lasing mode is driven by an increase in correlation between absorption and emission processes, leading to the onset of self-sustained stimulated emission (laser threshold), followed in turn by a correlation decrease and ending with the dominance of coherent emission. The first-order coherence g(1) steadily increases, as the pump grows towards the laser threshold value, and reaches unity at or beyond threshold. The transition toward coherent emission becomes increasingly sharp as the numbers of emitters and coupled electromagnetic cavity modes increase, continuously connecting, in the thermodynamic limit, the physics of nano- and macroscopic lasers at threshold. Our predictions are in remarkable agreement with experiments whose first-order coherence measurements have so far been explained only phenomenologically. A consistent evaluation of different threshold indicators provides a tool for a correct interpretation of experimental measurements at the onset of laser action.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available