4.7 Article

Muscle and liver-specific alterations in lipid and acylcarnitine metabolism after a single bout of exercise in mice

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep22218

Keywords

-

Funding

  1. Leibniz Gemeinschaft [SAW-FBN-2013-3]
  2. Sino-German Center for Research Promotion [GZ 753, 1391/1-1]
  3. Stiftung fur Pathobiochemie und Molekulare Diagnostik of the German Society of Clinical Chemistry and Laboratory Medicine
  4. German Federal Ministry of Education and Research (BMBF) to the German Centre for Diabetes Research [01GI0925]
  5. key foundation and creative research group project [21321064, 81472374]

Ask authors/readers for more resources

Intracellular lipid pools are highly dynamic and tissue-specific. Physical exercise is a strong physiologic modulator of lipid metabolism, but most studies focus on changes induced by long-term training. To assess the acute effects of endurance exercise, mice were subjected to one hour of treadmill running, and C-13(16)-palmitate was applied to trace fatty acid incorporation in soleus and gastrocnemius muscle and liver. The amounts of carnitine, FFA, lysophospholipids and diacylglycerol and the post-exercise increase in acetylcarnitine were pronouncedly higher in soleus than in gastrocnemius. In the liver, exercise increased the content of lysophospholipids, plasmalogens and carnitine as well as transcript levels of the carnitine transporter. C-13(16)-palmitate was detectable in several lipid and acylcarnitine species, with pronounced levels of tracer-derived palmitoylcarnitine in both muscles and a strikingly high incorporation into triacylglycerol and phosphatidylcholine in the liver. These data illustrate the high lipid storing activity of the liver immediately after exercise whereas in muscle, fatty acids are directed towards oxidation. The observed muscle-specific differences accentuate the need for single-muscle analyses as well as careful consideration of the particular muscle employed when studying lipid metabolism in mice. In addition, our results reveal that lysophospholipids and plasmalogens, potential lipid signalling molecules, are acutely regulated by physical exercise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available