4.6 Article

Hybrid quantum error correction in qubit architectures

Journal

PHYSICAL REVIEW A
Volume 108, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.108.022403

Keywords

-

Ask authors/readers for more resources

This research presents a hybrid approach combining autonomous correction and traditional measurement-based quantum error correction to correct the dominant phase and decay errors in superconducting qubit architectures. Numerical simulations demonstrate that this scheme can significantly increase the storage time by five to ten times and requires only six qubits for encoding and two ancillary qubits for autonomous correction, leading to a substantial reduction in qubit overhead compared to typical measurement-based error-correction schemes. Furthermore, this scheme can be implemented in a wide range of architectures as it relies on standard interactions and qubit driving available in most major quantum computing platforms.
Noise and errors are inevitable parts of any practical implementation of a quantum computer. As a result, large-scale quantum computation will require ways to detect and correct errors in quantum information. Here we present such a quantum error-correcting scheme for correcting the dominant phase and decay errors in superconducting qubit architectures using a hybrid approach combining autonomous correction based on engineered dissipation with traditional measurement-based quantum error correction. Using numerical simulations with realistic device parameters for superconducting circuits, we show that this scheme can achieve a five- to tenfold increase in storage time while using only six qubits for the encoding and two ancillary qubits for the operation of the autonomous correction, providing a potentially large reduction of qubit overhead compared to typical measurement-based error-correction schemes. Furthermore, the scheme relies on standard interactions and qubit driving available in most major quantum computing platforms, making it implementable in a wide range of architectures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available