4.6 Article

Efficient thyroid disorder identification with weighted voting ensemble of super learners by using adaptive synthetic sampling technique

Journal

AIMS MATHEMATICS
Volume 8, Issue 10, Pages 24274-24309

Publisher

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/math.20231238

Keywords

thyroid cancer; cancer detection; hypothyroid; machine learning; super learners

Ask authors/readers for more resources

This article proposes an innovative approach for diagnosing thyroid disease by combining adaptive synthetic sampling method with weighted average voting ensemble of two distinct super learners. The suggested methodology proves effective in enhancing accuracy of thyroid cancer identification.
There are millions of people suffering from thyroid disease all over the world. For thyroid cancer to be effectively treated and managed, a correct diagnosis is necessary. In this article, we suggest an innovative approach for diagnosing thyroid disease that combines an adaptive synthetic sampling method with weighted average voting (WAV) ensemble of two distinct super learners (SLs). Resampling techniques are used in the suggested methodology to correct the class imbalance in the datasets and a group of two SLs made up of various base estimators and meta-estimators is used to increase the accuracy of thyroid cancer identification. To assess the effectiveness of our suggested methodology, we used two publicly accessible datasets: the KEEL thyroid illness (Dataset1) and the hypothyroid dataset (Dataset2) from the UCI repository. The findings of using the adaptive synthetic (ADASYN) sampling technique in both datasets revealed considerable gains in accuracy, precision, recall and F1-score. The WAV ensemble of the two distinct SLs that were deployed exhibited improved performance when compared to prior existing studies on identical datasets and produced higher prediction accuracy than any individual model alone. The suggested methodology has the potential to increase the accuracy of thyroid cancer categorization and could assist with patient diagnosis and treatment. The WAV ensemble strategy computational complexity and the ideal choice of base estimators in SLs continue to be constraints of this study that call for further investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available