4.7 Article

Flash electropolishing of BCC Fe and Fe-based alloys

Journal

JOURNAL OF NUCLEAR MATERIALS
Volume 586, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jnucmat.2023.154672

Keywords

Flash electropolishing; Flash polishing; FIB induced damages; TEM; Ion irradiation; Electrochemistry

Ask authors/readers for more resources

This study introduces the flash electropolishing technique as a solution to remove FIB-induced damages from TEM samples. The technique has been successfully applied to various materials with adjustable parameters. It offers a promising solution to the challenges posed by FIB-induced damages in the preparation of TEM samples.
The preparation of transmission electron microscopy (TEM) samples is a critical step in the characterization of materials, and the focused ion beam (FIB) technique is a commonly used method. However, a significant limitation of this technique is the FIB-induced damages on the foil surfaces, which can obscure the real features of interest, particularly in radiation effects studies. To overcome this limitation, this study presents a detailed description of the flash electropolishing technique, which can be used to remove the FIB damage from samples. The flash electropolishing technique has been successfully applied to a range of materials, including Fe, Fe-based model alloys, commercial Fe-Cr alloys, and advanced Fe-Cr alloys, both in their as-received and ion-irradiated states. Furthermore, the parameters used for Fe-Cr model alloys can be adjusted for commercial and advanced alloys with minimal modifications. The study also examined the effects of electropolishing variables, such as perchloric acid concentration, electropolishing temperature, Cr concentration, and voltage. Qualitatively, a general trend and scoping test strategy is explored in our experiments. Overall, the flash electropolishing technique offers a promising solution to the challenges posed by FIB-induced damages in the preparation of TEM samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available