4.7 Article

Spin-orbital effects in metal-dichalcogenide semiconducting monolayers

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/srep24093

Keywords

-

Funding

  1. CONACYT
  2. Physics and Mathematics Department
  3. Research Division within UIA

Ask authors/readers for more resources

Metal-dioxide & metal-dichalcogenide monolayers are studied by means of Density Functional Theory. For an accurate reproduction of the electronic structure of transition metal systems, the spin orbit interaction is considered by using fully relativistic pseudopotentials (FRUP). The electronic and spin properties of MX2 (M = Sc, Cr, Mn, Ni, Mo & W and X = O, S, Se & Te) were obtained with FRUP, compared with the scalar relativistic pseudopotentials (SRUP) and with the available experimental results. Among the differences between FRUP and SRUP calculations are giant splittings of the valence band, substantial band gap reductions and semiconductor to metal or non-magnetic to magnetic transitions. MoO2, MoS2, MoSe2, MoTe2, WO2, WS2 and WSe2 are proposed as candidates for spintronics, while CrTe2, with mu similar to 1.59 mu(B), is a magnetic metal to be experimentally explored.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available