4.7 Article

Measurement of the nuclear modification factor of b-jets in 5.02 TeV Pb+Pb collisions with the ATLAS detector

Journal

EUROPEAN PHYSICAL JOURNAL C
Volume 83, Issue 5, Pages -

Publisher

SPRINGER
DOI: 10.1140/epjc/s10052-023-11427-9

Keywords

-

Ask authors/readers for more resources

This paper presents a measurement of b-jet production in Pb+Pb and pp collisions at root s(NN) = 5.02 TeV with the ATLAS detector at the LHC. The measurement uses 260 pb(-1) of pp collisions collected in 2017 and 1.4 nb(-1) of Pb+Pb collisions collected in 2018. The nuclear modification factor, RAA, is calculated for both b-jets and inclusive jets with R=0.2 over the transverse momentum range of 80-290 GeV. The measurements suggest a role for mass and colour-charge effects in partonic energy loss in heavy-ion collisions.
This paper presents a measurement of b-jet production in Pb+Pb and pp collisions at root s(NN) = 5.02 TeV with the ATLAS detector at the LHC. The measurement uses 260 pb(-1) of pp collisions collected in 2017 and 1.4 nb(-1) of Pb+Pb collisions collected in 2018. In both collision systems, jets are reconstructed via the anti-kt algorithm. The b-jets are identified from a sample of jets containing muons from the semileptonic decay of b-quarks using template fits of the muon momentum relative to the jet axis. In pp collisions, b-jets are reconstructed for radius parameters R=0.2 and R=0.4, and only R=0.2 jets are used in Pb+Pb collisions. For comparison, inclusive R=0.2 jets are also measured using 1.7 nb(-1) of Pb+Pb collisions collected in 2018 and the same pp collision data as the b-jet measurement. The nuclear modification factor, RAA, is calculated for both b-jets and inclusive jets with R=0.2 over the transverse momentum range of 80-290 GeV. The nuclear modification factor for b-jets decreases from peripheral to central collisions. The ratio of the b-jet RAA to inclusive jet RAA is also presented and suggests that the RAA for b-jets is larger than that for inclusive jets in central Pb+Pb collisions. The measurements are compared with theoretical calculations and suggest a role for mass and colour-charge effects in partonic energy loss in heavy-ion collisions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available