4.6 Article

Cu@CuO promoted g-C3N4/MCM-41: an efficient photocatalyst with tunable valence transition for visible light induced hydrogen generation

Journal

RSC ADVANCES
Volume 6, Issue 113, Pages 112602-112613

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra24358d

Keywords

-

Ask authors/readers for more resources

A series of ternary Cu@CuO-g-C3N4/MCM-41 photocatalysts have been synthesized by varying the percentage of Cu using simple impregnation and co-condensation methods. The physico-chemical characterization of all the samples was determined using XRD, FTIR, UV-Vis DRS, PL, N-2 ads-des studies, SEM and XPS HRTEM, EDAX, EIS and MS. The structural advantages of MCM-41, allow the uniform distribution of g-C3N4 and coexistence of Cu2+ along with Cu-0 without using a reducing agent. The presence of g-C3N4 helps to shift the Fermi level of CuO towards more negative values due to accumulation of photogenerated electrons on the surface. It favours charge separation by creating a Schottky barrier at the junction. The 4 wt% Cu loaded over g-C3N4/MCM-41 exhibits a maximum 750 mmol 2 h (1) of H-2 evolution under visible light irradiation with an apparent energy conversion efficiency of 24.8%. The enhancement in catalytic activity has been explained on the basis of synergism between g-C3N4 and Cu2+ and the SPR effect of Cu which also acts as a co-catalyst present on the surface of photocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available