4.6 Article

Numerical and Experimental Study on Flow Field around Slab-Type High-Rise Residential Buildings

Journal

SUSTAINABILITY
Volume 15, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/su151712685

Keywords

high-rise residential building; fluctuating wind; wind tunnel test; numerical simulation; flow field

Ask authors/readers for more resources

High-rise residential buildings with rectangular cross-sections and large depth-to-width ratios often have grooves and chamfers for better ventilation and lighting. This study analyzed the surface wind pressures and flow fields around two typical buildings using wind tunnel tests and large eddy simulations (LES). The results showed that numerical simulation accurately represented the magnitudes and variations in wind loads along the height of the building, as well as the dominant energy distribution characteristics of fluctuating wind loads in the frequency domain. The impact of wind direction and plan dimensions on flow characteristics and aerodynamic behavior was emphasized.
High-rise residential buildings often adopt rectangular cross-sections with large depth-to-width ratios. Moreover, the cross-sections have many grooves and chamfers for better ventilation and lighting. However, related research is lacking. This study performed wind tunnel tests and large eddy simulations (LES) on two typical buildings to analyze the surface wind pressures and flow fields around the buildings. The base moment spectra, along with the wind pressure coefficients, demonstrate that numerical simulation is capable of accurately representing the magnitudes and variations in wind loads along the height of the building. Furthermore, numerical simulation effectively captures the dominant energy distribution characteristics of fluctuating wind loads in the frequency domain. The shear layer separations, vortex shedding and reattachment phenomenon were observed. It was found that in the middle and lower parts of the buildings, the shear layer separation changed dramatically. Buildings with depth-to-width ratios close to 2 are minimally affected by changes in wind direction. However, for buildings with larger depth-to-width ratios, especially when the short side faces the wind, the reattachment of the shear layer and the shedding of wake vortices become crucial factors in generating fluctuating cross-wind loads. This emphasizes the significant impact of wind direction and plan dimensions on flow characteristics and aerodynamic behavior. When the building contained corners and grooves, the low-wind-speed area induced by the shear layer separation shrank and the reattachment point shifted closer to the windward facade.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available