4.6 Article

Characterization of Al-12Si Thin-Wall Properties Fabricated with Laser Direct Energy Deposition

Journal

SUSTAINABILITY
Volume 15, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/su151712806

Keywords

Laser Direct Energy Deposition (LDED); additive manufacturing; Al-Si eutectic alloys; microstructure; surface profile roughness; hardness

Ask authors/readers for more resources

This study used gas-atomized Al-12Si alloy powder as feedstock for Laser Direct Energy Deposition (LDED) process. SEM analysis showed that the powder particles had suitable morphology for LDED. The deposited samples exhibited the presence of Al-rich and Al-Si eutectic regions, with a porosity content of approximately 2.6%. The tensile properties of the fabricated thin walls were superior to casted Al alloys due to the uniform distribution of Si in each layer. The results can serve as a guideline for the fabrication of aerospace components with high structural integrity.
Additive manufacturing is an emerging process that is used to manufacture industrial parts layer by layer and can produce a wide range of geometries for various applications. AM parts are adopted for aerospace, automobiles, antennas, gyroscopes, and waveguides in electronics. However, there are several challenges existing in manufacturing Al components using the AM process, and their mechanical and microstructural properties are not yet fully validated. In the present study, a gas-atomised powder of a eutectic Al-12Si alloy was used as feedstock for the Laser Direct Energy Deposition (LDED) process. A SEM analysis of Al-12Si powder used for processing illustrated that particles possess appropriate morphology for LDED. A numerical control system was used to actuate the deposition head towards printing positions. The deposited samples revealed the presence of Al-rich and Al-Si eutectic regions. The porosity content in the samples was found to be around 2.6%. Surface profile roughness measurements and a microstructural analysis of the samples were also performed to assess the fabricated sample in terms of the roughness, porosity, and distribution of Al and Al/Si eutectic phases. The tensile properties of fabricated thin walls were better compared to casted Al alloys due to the uniform distribution of Si in each layer. Micro-hardness tests on the deposited samples showed a hardness of 95 HV, which is equivalent to casted and powder bed fusion melting samples. The gas atomised Al-12Si powders are highly reflective to a laser and also quick oxidation takes place, which causes defects, porosity, and the balling effect during fabrication. The results can be used as a base guide for the further fabrication of aerospace component design with high structural integrity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available