4.6 Article

Tunable negative permittivity behavior of random carbon/alumina composites in the radio frequency band

Journal

RSC ADVANCES
Volume 6, Issue 90, Pages 87153-87158

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra19591a

Keywords

-

Funding

  1. National Basic Research Program of China (973 Program) [2014CB643306]
  2. National Natural Science Foundation of China [51172131, 51402170]

Ask authors/readers for more resources

A random metamaterial, carbon/alumina (C/Al2O3) composite, was prepared using a precursor infiltration and pyrolysis method, which has potential applications in novel antennas, microwave absorbing and shielding. The microstructures, radio-frequency dielectric property and conductivity behavior of the composites with different carbon contents were investigated in detail. It was found that the carbon membrane spread out on the pore walls of the alumina matrix. As the carbon content increased, the composites underwent a percolation phenomenon, and the conductive mechanism changed from hopping conduction to metal-like conduction due to the formation of conductive carbon networks. A negative permittivity behavior was observed in the composites above the percolation threshold, and this was ascribed to the low frequency plasmonic state produced by the carbon networks. The frequency dispersion of such negative permittivity efficiently agreed with the Drude model. The negative magnitude of permittivity in the testing frequency was small, ranging from -370 to -28, which originated from the lower carrier concentration in the conducting carbon networks. This work will greatly facilitate the practical application of random metamaterials with tunable electrical properties, and has great significance for the development of metamaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available