4.4 Article

Highly protein-loaded melt extrudates produced by small-scale ram and twin-screw extrusion - evaluation of extrusion process design on protein stability by experimental and numerical approaches

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijpx.2023.100196

Keywords

Hot-melt extrusion; Protein formulation; Solid-state stability; Computational fluid dynamics; Numerical simulation

Ask authors/readers for more resources

Understanding the generation, extent, and location of thermomechanical stress during small-scale melt-extrusion is crucial for determining the stability of protein particles. Experimental and numerical approaches were utilized to evaluate the impact of extrusion process design on protein stability. The results showed that the ram extruder is more favorable for producing stable protein-loaded extrudates in small scale, compared to the twin-screw extruder.
Understanding of generation, extent and location of thermomechanical stress in small-scale (< 3 g) ram and twin-screw melt-extrusion is crucial for mechanistic correlations to the stability of protein particles (lysozyme and BSA) in PEG-matrices. The aim of the study was to apply and correlate experimental and numerical approaches (1D and 3D) for the evaluation of extrusion process design on protein stability. The simulation of thermo-mechanical stress during extrusion raised the expectation of protein degradation and protein particle grinding during extrusion, especially when TSE was used. This was confirmed by experimental data on protein stability. Ram extrusion had the lowest impact on protein unfolding temperatures, whereas TSE showed significantly reduced unfolding temperatures, especially in combination with kneading elements containing screws. In TSE, the mechanical stress in the screws always exceeded the shear stress in the die, while mechanical stress within ram extrusion was generated in the die, only. As both extruder designs revealed homogeneously distributed protein particles over the cross section of the extrudates for all protein-loads (20-60%), the dispersive power of TSE revealed not to be decisive. Consequently, the ram extruder would be favored for the production of stable protein-loaded extrudates in small scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available