4.7 Article

Carbonic anhydrase IV in lizard chemical signals

Journal

SCIENTIFIC REPORTS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-41012-9

Keywords

-

Ask authors/readers for more resources

The evolution of chemical signals is influenced by environmental constraints. Carbonic anhydrases (CAs), enzymes involved in physiological processes, have been identified in the femoral gland secretions (FG) of marine iguanas and may contribute to the stability of the signal. To validate this, FG secretions of wall lizards were analyzed, confirming the presence of CA-IV and supporting the hypothesis of its role in signal homeostasis. This discovery opens up new perspectives on the role of proteins in vertebrate chemical communication.
The evolution of chemical signals is subject to environmental constraints. A multicomponent signal may combine semiochemical molecules with supporting compounds able to enhance communication efficacy. Carbonic anhydrases (CAs) are ubiquitous enzymes catalysing the reversible hydration of carbon dioxide, a reaction involved in a variety of physiological processes as it controls the chemical environment of the different tissues or cellular compartments, thus contributing to the overall system homeostasis. CA-IV isoform has been recently identified by mass spectrometry in the femoral gland secretions (FG) of the marine iguana, where it has been hypothesized to contribute to the chemical stability of the signal, by regulating blend pH. Lizards, indeed, use FG to communicate by delivering the waxy secretion on bare substrate, where it is exposed to environmental stressors. Therefore, we expect that some molecules in the mixture may play supporting functions, enhancing the stability of the chemical environment, or even conferring homeostatic properties to the blend. CA-IV may well represent an important candidate to this hypothesized supporting/homeostatic function, and, therefore, we can expect it to be common in FG secretions of other lizard species. To evaluate this prediction and definitely validate CA identity, we analysed FG secretions of eight species of wall lizards (genus Podarcis), combining mass spectrometry, immunoblotting, immunocytochemistry, and transmission electron microscopy. We demonstrate CA-IV to actually occur in the FG of seven out of the eight considered species, providing an immunochemistry validation of mass-spectrometry identifications, and localizing the enzyme within the secretion mass. The predicted structure of the identified CA is compatible with the known enzymatic activity of CA-IV, supporting the hypothesis that CA play a signal homeostasis function and opening to new perspective about the role of proteins in vertebrate chemical communication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available