4.6 Article

Eu3+ doped α-sodium gadolinium fluoride luminomagnetic nanophosphor as a bimodal nanoprobe for high-contrast in vitro bioimaging and external magnetic field tracking applications

Journal

RSC ADVANCES
Volume 6, Issue 50, Pages 44606-44615

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra04373a

Keywords

-

Funding

  1. University Grant Commission (UGC), Government of India
  2. Dan L Duncan Cancer Center (DLDCC)

Ask authors/readers for more resources

Herein, we introduce a novel strategy for the synthesis of Eu3+ doped alpha-sodium gadolinium fluoride (alpha-NaGd0.88F4:Eu0.12(3+)) based luminomagnetic nanophosphors using a hydrothermal route. The synthesized nanophosphor has exceptional luminescent and paramagnetic properties in a single host lattice, which is highly desirable for biomedical applications. This highly luminescent nanophosphor with an average particle size similar to 5 +/- 3 nm enables high-contrast fluorescent imaging with decreased light scattering. In vitro cellular uptake is shown by fluorescent microscopy that envisages the characteristic hypersensitive red emission of Eu3+ doped alpha-sodium gadolinium fluoride centered at 608 nm (D-5(0)-F-7(2)) upon 465 nm excitation wavelength. No apparent cytotoxicity is observed. Furthermore, time-resolved emission spectroscopy and SQUID magnetic measurements successfully demonstrate a photoluminescence decay time of microseconds and an enhanced paramagnetic behavior, which holds promise for the application of nanophosphors in biomedical studies. Hence, the obtained results strongly suggest that this nanophosphor could be potentially used as a bimodal nanoprobe for high-contrast in vitro bioimaging of HeLa cells and external magnetic field tracking applications of luminomagnetic nanophosphors using permanent magnet.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available