4.6 Article

Electrochemically fabricated gold dendrites with underpotential deposited silver monolayers for a bimetallic SERS-active substrate

Journal

RSC ADVANCES
Volume 6, Issue 16, Pages 13185-13192

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra27020k

Keywords

-

Funding

  1. Ministry of Science and Technology [NSC 102-2112-M-213-005-MY3]

Ask authors/readers for more resources

With electrochemical deposition, cysteine-directed crystalline gold dendrites (Au-Ds) on glassy carbon electrodes were fabricated. The Au-Ds surfaces were further modified with Ag adatoms by underpotential deposition (UPD) for Ag-covered Au-Ds (Ag-Au-Ds). The Ag-Au-Ds possessed a hierarchical architecture comprising trunks, branches, and nanoleaves for a threefold-symmetry, resulting in a high density of sharp tips and edges for hot spots of surface-enhanced Raman scattering (SERS). Prominent SERS was observed with p-nitrothiophenol (p-NTP) adsorption onto either Au-Ds or Ag-Au-Ds, for a best p-NTP detection limit down to 5-10 nM at 785 nm laser excitation. However, at specific 633 nm laser excitation, SERS with p-NTP adsorption on Ag-Au-Ds exhibited a three-fold higher enhancement over that measured for p-NTP adsorbed on unmodified Au-Ds, suggesting an increased chemical SERS enhancement with the Ag-p-NTP bonding. Furthermore, adsorption isotherms of p-NTP with Au-Ds and Ag-Au-Ds adsorption in solution are established from solution p-NTP-concentration dependent SERS; from which, comparable binding constants of p-NTP to Au-Ds and Ag-Au-Ds are extracted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available