4.6 Article

Isocyanurate-based periodic mesoporous organosilica (PMO-ICS): a highly efficient and recoverable nanocatalyst for the one-pot synthesis of substituted imidazoles and benzimidazoles

Journal

RSC ADVANCES
Volume 6, Issue 90, Pages 86982-86988

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra14550g

Keywords

-

Funding

  1. Research Council of Iran University of Science and Technology (IUST), Tehran, Iran [160/347]
  2. Iran Nanotechnology Initiative Council (INIC), Iran

Ask authors/readers for more resources

Isocyanurate bridging periodic mesoporous organosilica (PMO-ICS) was shown to be a highly active and efficient recyclable catalyst for the three-component synthesis of imidazole derivatives from benzoin, different aldehydes and ammonium acetate under mild reaction conditions in short reaction times and good to excellent yields in EtOH. Also, benzimidazole derivatives were efficiently prepared from o-phenylenediamine and different aldehydes in the presence of PMO-ICS. Moreover, the catalyst was also recovered and reused at least four times without a significant decrease in its activity. The PMO-ICS catalyst was characterized by Fourier transformer infrared (FTIR) spectroscopy, thermogravimetry analysis (TGA), powder X-ray diffraction (XRD) and nitrogen adsorption-desorption isotherm (NADI) techniques as well as field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Compared to the classical methodologies, this method illustrated significant advantages including low loading of the catalyst, avoiding the use of toxic transition metals or reactive reagents for modification of the catalytic activity, short reaction times, high to excellent yields, easy separation and purification of the products, and reusability of the catalyst.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available