4.6 Article

An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering

Journal

RSC ADVANCES
Volume 6, Issue 40, Pages 33529-33536

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra26160k

Keywords

-

Funding

  1. National Natural Science Youth Foundation of China [81101395, 81401871]

Ask authors/readers for more resources

The aim of the present study was to fabricate an injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel and investigate its potent application in bone tissue engineering. The resultant composite hydrogel was thoroughly characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD). The developed composite hydrogels exhibited a porous structure (pore size: 100-350 mu m) associated with many n-HA particles and their aggregation inside the hydrogel, as indicated by scanning electron microscopy (SEM). With an increase in HyA concentration, the porosity and swelling ratio of the hydrogels decreased accordingly. The developed composite hydrogels were susceptive to the enzymatic hydrolysis, which exhibited a faster degradation rate in PBS solution containing 2.5 mg ml(-1) lysozyme than that of in PBS (pH = 7.4). In vitro cytocompatibility was evaluated by using MC-3T3-E1 cells to confirm that the developed composite hydrogels were cytocompatible, non-toxic and cells were found to be attached and well spread out on the hydrogels after 7 days co-incubation. All these results suggest that the developed composite hydrogels has great potential for bone tissue engineering application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available