4.6 Article

Thermal stability of phenolic resin: new insights based on bond dissociation energy and reactivity of functional groups

Journal

RSC ADVANCES
Volume 6, Issue 60, Pages 55007-55016

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra07597e

Keywords

-

Funding

  1. National Natural Science Foundation of China [51473134, 51273160]

Ask authors/readers for more resources

Density functional theory (DFT) was applied to model molecules of phenolic resin (PR) to interpret the relationship between the atomistic structure and thermal properties of the cured PR. The bond dissociation energy (BDE) of C-C (in methylene bridges) and C-O bonds (in hydroxyls), as well as the Fukui function of hydroxyl, benzene and methylene groups, were calculated. The isomers of bisphenol-F and the methyl substituents have a slight effect on the BDEs of C-C and C-O bonds, while the oxidized structures, such as p-benzoquinone and aldehyde groups, lead to a drastic decrease in the C-C bond BDEs. The high reactivity of the carbon atoms in the benzene groups and the oxidized structures results in an increased possibility of being attacked by free radicals and protects the methylenes from being attacked, but it will also lead to ring-opening reactions and weight loss. These results provide a great opportunity to understand the relationship between the atomistic structure and the thermal stability of the cured PR, which plays a pivotal role in the design and optimization of thermal stable polymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available