4.6 Article

An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes

Journal

RSC ADVANCES
Volume 6, Issue 9, Pages 6960-6966

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra24256h

Keywords

-

Funding

  1. MOTIE/KEIT [10046309]
  2. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and future Planning [2015R1A2A1A01003474]

Ask authors/readers for more resources

Nanostructured silicon has garnered considerable attention as a promising lithium-ion battery anode material that can mitigate volume expansion-induced pulverization during electrochemical lithiation-delithiation reaction. However, the advantageous effect of the nanostructured silicon materials is often shadowed by electrochemically-vigorous liquid electrolytes. Herein, a variety of silicon particles featuring well-defined nanostructures were synthesized and then combined with chemically-crosslinked, triacrylate-based gel polymer electrolytes (GPEs), with an aim to pursue unprecedented synergistic coupling and its versatile applicability for high-performance silicon anodes. The silicon anode combined with the GPE showed a specific capacity of over 2000 mA h g(-1) after 100 cycles, excellent discharge rate capability (capacity of 80% at 5.0C with respect to 0.2C), and volume change of 53% relative to a control system (silicon anode/liquid electrolyte). Excellent flexibility of the GPE with reliable electrochemical properties is believed to play a viable role as a mechanical cushion that can alleviate the stress and strain of silicon materials inevitably generated during repeated charge/discharge cycling. The nanostructured silicon/GPE-based coupling strategy presented herein opens a new way to enable a significant improvement in the electrochemical performance and long-term durability of high-capacity silicon anodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available