4.3 Article

Tumor-associated macrophages induce vasculogenic mimicry of glioblastoma multiforme through cyclooxygenase-2 activation

Journal

ONCOTARGET
Volume 7, Issue 51, Pages 83976-83986

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.6930

Keywords

M-2 macrophages; glioblastoma multiforme; vasculogenic mimicry; COX-2

Ask authors/readers for more resources

Glioblastoma multiforme (GBM) is a malignant brain tumor with characteristics of strong aggressiveness which depend on vigorous microvascular supply. Vasculogenic mimicry (VM), a new microvascular circulation not involving endothelial cells, is reported as one part of the vascularization of GBM. Tumor-associated macrophages (TAMs), mostly present as immunosuppressive M-2 phenotype in GBM, are well known as a promoter for tumor angiogenesis. However, whether TAMs can induce VM in GBM remains uncertain. In the present study, immunohistochemistry showed that higher numbers of macrophages infiltrating in the VM-positive area where tumor cells also highly express COX-2. By using the coculture model of U87 cell line and Interleukin-4-activated M-2 macrophages, we found that the capability of VM formation was increased and COX-2 expression was up-regulated in U87 cells. Moreover, knockdown of COX-2 by siRNA Oligonucleotides or abrogating activity of COX-2 by specific inhibitors resulted in impairment of VM formation. Besides, in the process of VM formation, PGE2/EP1/PKC pathway was activated in U87 cells and inhibition of COX-2 led to down-regulation of PGE2 and PKC. In in vivo experiment, we found that COX-2 loss of function in the U87 xenograft model lead to less vascular mimicry. Collectively, our study demonstrates that M-2 macrophages are capable of promoting generation of VM in GBM with COX-2 dependent, providing potential mechanisms of the interaction between inflammatory microenvironment and perivascular microenvironment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available