4.3 Article

The human box C/D snoRNAs U3 and U8 are required for prer-RNA processing and tumorigenesis

Journal

ONCOTARGET
Volume 7, Issue 37, Pages 59519-59534

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.11148

Keywords

snoRNA; nucleolus; ribosome; tumorigenesis; cancer

Funding

  1. FRIA (Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture) fellowship
  2. Universite Libre de Bruxelles (ULB)
  3. Fonds National de la Recherche (F.R.S./FNRS)
  4. Walloon Region [DGO6]
  5. Federation Wallonie-Bruxelles
  6. European Research Development Fund (ERDF)
  7. Fondation ULB
  8. Fonds Erasme
  9. Association Vincotte Nuclear (AVN)
  10. ERDF

Ask authors/readers for more resources

Small nucleolar RNAs (snoRNAs) are emerging as a novel class of proto-oncogenes and tumor suppressors; their involvement in tumorigenesis remains unclear. The box C/D snoRNAs U3 and U8 are upregulated in breast cancers. Here we characterize the function of human U3 and U8 in ribosome biogenesis, nucleolar structure, and tumorigenesis. We show in breast (MCF-7) and lung (H1944) cancer cells that U3 and U8 are required for pre-rRNA processing reactions leading, respectively, to synthesis of the small and large ribosomal subunits. U3 or U8 depletion triggers a remarkably potent p53-dependent anti-tumor stress response involving the ribosomal proteins uL5 (RPL11) and uL18 (RPL5). Interestingly, the nucleolar structure is more sensitive to perturbations in lung cancer than in breast cancer cells. We reveal in a mouse xenograft model that the tumorigenic potential of cancer cells is reduced in the case of U3 suppression and totally abolished upon U8 depletion. Tumors derived from U3knockdown cells displayed markedly lower metabolic volume and activity than tumors derived from aggressive control cancer cells. Unexpectedly, metabolic tracer uptake by U3-suppressed tumors appeared more heterogeneous, indicating distinctive tumor growth properties that may reflect non-conventional regulatory functions of U3 (or fragments derived from it) in mRNA metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available